Respect for your privacy is our priority

The cookie is a small information file stored in your browser each time you visit our web page.

Cookies are useful because they record the history of your activity on our web page. Thus, when you return to the page, it identifies you and configures its content based on your browsing habits, your identity and your preferences.

You may accept cookies or refuse, block or delete cookies, at your convenience. To do this, you can choose from one of the options available on this window or even and if necessary, by configuring your browser.

If you refuse cookies, we can not guarantee the proper functioning of the various features of our web page.

For more information, please read the COOKIES INFORMATION section on our web page.


News

Research: Tomato fruits communicate by electric signals

03/08/2021 - Press release , Sophie Colvine
Tomato fruits inform the mother plant when they are being eaten by caterpillars, shows a new study. Little is known about whether a fruit can communicate with the plant to which it’s attached, which could be important for warning the plant of threats. This early evidence shows that pest attacks do trigger defensive electrical and biochemical responses across the plant. This could provide more effective monitoring strategies for detecting agricultural pests in the future.

A recent study in Frontiers in Sustainable Food Systems shows that the fruits of a type of tomato plant send electrical signals to the rest of the plant when they are infested by caterpillars. Plants have a multitude of chemical and hormonal signaling pathways, which are generally transmitted through the sap (the nutrient-rich water that moves through the plant). In the case of fruits, nutrients flow exclusively to the fruit and there has been little research into whether there is any communication in the opposite direction–i.e. from fruit to plant.

We usually forget that a plant’s fruits are living and semiautonomous parts of their mother-plants, far more complex than we currently think! Since fruits are part of the plant, made of the same tissues of the leaves and stems, why couldn’t they communicate with the plant, informing it about what they are experiencing, just like regular leaves do?” says first author Dr Gabriela Niemeyer Reissig, of the Federal University of Pelotas, in Pelotas, Brazil. “What we found is that fruits can share important information such as caterpillar attack–which is a serious issue for a plant–with the rest of the plant, and that can probably prepare other parts of the plant for the same attack.

A tomato’s defense
To test the hypothesis that fruits communicate by electrical signals, Niemeyer Reissig and her collaborators placed tomato plants in a Faraday’s cage with electrodes at the ends of the branches connecting the fruits to the plant. They then measured the electrical responses before, during and after the fruits had been attacked by Helicoverpa armigera caterpillars for 24 hours. The team also used machine learning to identify patterns in the signals.

Set up of the experiment. (Image: Gabriela Niemeyer Reissig)

The results showed a clear difference between the signals before and after attack. In addition, the authors measured the biochemical responses, such as defensive chemicals like hydrogen peroxide, across other parts of the plant. This showed that these defenses were triggered even in parts of the plant that were far away from the damage caused by the caterpillars.

The authors emphasize that these are still early results. Their measurements provide a “big picture” view of all of the electrical signals, rather than distinguishing individual signals more precisely. It will also be interesting to see whether this phenomenon holds true for other plant species, as well as different types of threats.

That said, this novel use of machine learning appears to have very high potential for answering these and other future questions. The technique may also provide new–and possibly more environmentally friendly–approaches for insect control in agriculture.

If studies like ours continue to advance and the techniques for measuring electrical signals in open environments continue to improve, it will be possible to detect infestation of agricultural pests quite early, allowing for less aggressive control measures and more accurate insect management,” explains Niemeyer Reissig. “Understanding how the plant interacts with its fruits, and the fruits among themselves, may bring insights about how to ‘manipulate’ this communication for enhancing fruit quality, resistance to pests and shelf life after harvest.

Reference: Reissig GN, Oliveira TFC, Oliveira RP, Posso DA, Parise AG, Nava DE and Souza GM (2021) Fruit Herbivory Alters Plant Electrome: Evidence for Fruit-Shoot Long-Distance Electrical Signaling in Tomato Plants. Front. Sustain. Food Syst. 5:657401. doi: 10.3389/fsufs.2021.657401

Full article
here 

Source: Frontiers Science News
Back

________________________________________

Editor : TOMATO NEWS SAS -  MAISON DE L'AGRICULTURE - TSA 48449 - 84912 AVIGNON Cedex 9 - FRANCE
contact@tomatonews.com
www.tomatonews.com

 

 

Supporting partners
Featured company
NAVATTA GROUP FOOD PROCESSING S.R.L.
Most popular news
Featured event
The G2P-SOL Advanced Training School - Breeding Solanaceae Fruit: Eggplant, Pepper and Tomato
Our supporting partners